
Similarity 
Queries over 

Hierarchical Data 
PhD Defense - December 9th 2021

a

Department of 
Computer Science

Thomas Hütter

Projektnummer P 29859, P 34962-N

Supported by:

Supervisor: Univ.-Prof. Dipl.-Ing. Nikolaus Augsten, Ph.D. 
Co-Supervisor: Dr. Mateusz Pawlik



Introduction
Trees, Tree Edit Distance, JSON

1



Trees

d

c b

a d

a

Node

Edge

Siblingsb

d

c

d a

a
ChildParent

Label
T1 T2

2



• Ordered trees: sibling order matters.

d

c b

a d

a

b

d

c

d a

a

≠

Trees - Sibling Order

T1 T2

3



Trees in Computer Science

<article mdate="2017-01-11" key=“…/AugstenBG10”>
  <author>Nikolaus Augsten</author>
  <author>Michael H. Boehlen</author>
  <author>Johann Gamper</author>
  <title> The pq-gram distance 
  between ordered labeled trees.</title>
  <year>2010</year>
  <volume>35</volume>
  <journal>ACM Trans. Database Syst.</journal>
  <number>1</number>
  <ee>http://doi.acm.org/
      10.1145/1670243.1670247</ee>
  <url>db/journals/…#AugstenBG10</url>
  <pages>4:1-4:36</pages>
</article>

article

author yeartitlemdatekey journal

AugstenBG10

Augsten

Böhlen

Gamper

2010 TODS2017-01-11 The pq-gram …

• XML[1]:

4



Trees in Biology

U
A

G-C
G-C
G-C

C

A

A
G-C
C-G
G-C
G-C
G-C

A

A

A
C

C

U

C
C

A
G

C
C

C

U
U
U

G
U

U

G
C

- G
C

- C
G

- G
G

- C
G

- C
G

- G
C

-

C

C

C
C

A

GC

C C CC

RT

GC UA

GC

GC

C AA G UU U UUGC CG

CG

GC

GC A

CG

GC

GG

GC

A GC

CG

A CC A CU C AGC C CA

• RNA secondary structure[2]:

5



Trees in Linguistics

Sean Penn, you owe Nicolas Cage an apology.

2

2 2

2 Sean 2 ,2 Penn 1

2 you 1

2 2.

2 2

2 owe 2

2 Nicolas 2 Cage

2 an 2 apology

• Sentimental analysis of movie ratings[3]:

6



b

a

f

Tree Edit Distance (TED)
• Definition: the minimum number of edit operations that transform one tree into another. 

• Edit operations:

dc

7



b

f

a

d

Tree Edit Distance (TED)

delete a

d

f

c

c

• Definition: the minimum number of edit operations that transform one tree into another. 

• Edit operations:

7



b

a

d

b

a

c

insert

f

f

Tree Edit Distance (TED)

c

d

e

• Definition: the minimum number of edit operations that transform one tree into another. 

• Edit operations:

7



b

a

b

a

renamef

f

Tree Edit Distance (TED)

d

ec

c

• Definition: the minimum number of edit operations that transform one tree into another. 

• Edit operations:

7



• Example: trees T1 and T2 with TED(T1, T2) = 3. 

• Complexity:   
• O(n3) time for ordered trees[4]. 
• NP-hard for unordered trees[5].

b

d

a

e

Tree Edit Distance (TED)

d

b

d

a

c

a

T1 T2

8



• Definition[6]: 
• Objects: unordered collection of key-value pairs. 
• Arrays: ordered list of values. 
• Values: literals (e.g., string), arrays, and objects.

JSON Data Format

{ 
    "cast" : [ 
       "Ford", 
       "Fisher" 
    ],  
    "running time" : 125, 
    "name" : "Star Wars - A New Hope" 
}

JSON document 1

9



Cumulative Thesis
• “Effective filters and linear time verification for tree similarity joins” 

Thomas Hütter, Mateusz Pawlik, Robert Löschinger, and Nikolaus Augsten,  
IEEE 35th International Conference on Data Engineering (ICDE), 2019. 

• “JEDI: These aren't the JSON documents you're looking for...” 
Thomas Hütter, Nikolaus Augsten, Christoph M Kirsch, Michael J Carey, and Li Chen, 
Submitted to the International Conference on Management of Data (ACM SIGMOD), 2022. 

• “DeSignate: detecting signature characters in gene sequence alignments for taxon diagnoses”
Thomas Hütter, Maximilian H Ganser, Manuel Kocher, Merima Halkic, Sabine Agatha, and Nikolaus Augsten, 
BMC bioinformatics 21.1, 2020. 

• “A Link is not Enough – Reproducibility of Data” 
Mateusz Pawlik, Thomas Hütter, Daniel Kocher, Willi Mann, and Nikolaus Augsten, 
Datenbank-Spektrum 19.2, 2019.

10



JSON Similarity Lookup
• Definition: 

• Given: distance function δ, user-defined threshold τ, and a query JSON document dq. 
• Goal: retrieve all JSON documents di from a database D that are similar to dq, i.e., δ(dq,di) ≤ τ.

Query document dq Database D

{ 
    "cast" : [ 
       "Ford", 
       "Fisher" 
    ],  
    "running time" : 125, 
    “name" : "Star Wars - A New Hope" 
} 

{ 
    "title" : "Star Wars - A New Hope",  
    "running time" : 125,  
    "cast" : { 
        "Han" : "Ford", 
        "Leia" : "Fisher" 
    } 
} 

[ 
    “Ford” 
]

{ 
    “cast" : { 
        "Han" : "Ford", 
        "Leia" : "Fisher" 
    } 
} 

“Star…”

11



• Goal: find a distance function δ for JSON documents. 
 
 
 
 
 
 
 
 

• Existing solutions: 
• Ignore the structure (e.g., line-based approaches). 
• No quality guarantees (e.g., distance not minimal).

{ 
    "title" : "Star Wars - A New Hope",  
    "running time" : 125,  
    "cast" : { 
        "Han" : "Ford", 
        "Leia" : "Fisher" 
    } 
} 

{ 
    "cast" : [ 
       "Ford", 
       "Fisher" 
    ],  
    "running time" : 125, 
    “name" : "Star Wars - A New Hope" 
} 

Distance Functions for JSON

JSON document 1 JSON document 2

δ

12



• Goal: find a lossless representation of JSON documents. 

• JSON trees:

{ 
    "cast" : [ 
       "Ford", 
       "Fisher" 
    ],  
    "running time" : 125, 
    “name" : "Star Wars - A New Hope" 
} 

JSON Representation

JSON document 1 JSON tree 1

“Star…”

“Ford” “Fisher”

125

{ }

[ ]

“cast” “r.time” “name”

Object

Array

Key

Value

unordered

ordered

types

transformation

13



• Goal: find a distance function δ for JSON trees. 
 
 
 
 
 
 
 
 

• Existing solutions: 
• TED is NP-complete for JSON trees.

Distance Functions for JSON

JSON tree 1 JSON tree 2

δ
“Star…”

“Ford” “Fisher”

125

{ }

[ ]

“cast” “r.time” “name”

“Star…”

“Ford” “Fisher”

125

{ }

“title” “r.time” “name”

{ }

“Han” “Leia”

14



Document-Preserving

{ }

“Hopkins” “Cranston”

{ }

“US” 1965

“Nat.” “Born”

{ }

“1,75m” 2

“Height” “Oscars”

{ }

“Roberts” “Hanks”

{ }

2 1965

“Oscars” “Born”

{ }

“1,75m” “US”

“Height” “Nat.”

• Observation: TED is too permissive.

JSON tree 1 JSON tree 2

15



Document-Preserving

{ }

“Hopkins” “Cranston”

{ }

“US” 1965

“Nat.” “Born”

{ }

“1,75m” 2

“Height” “Oscars”

{ }

“Roberts” “Hanks”

{ }

2 1965

“Oscars” “Born”

{ }

“1,75m” “US”

“Height” “Nat.”

• Intuition: each subtree of a JSON tree is nested document.

Distinct subtrees are matched.
JSON tree 1 JSON tree 2

15



• Definition: the minimum number of node edit operations (insert, delete, and rename) that 
transform one tree into the other satisfying the document-preserving constraint. 
 
 
 
 
 
 
 
 

• Baseline algorithm: runs in O(n2 d log(d)) time and O(n2) space where n is the tree size and d 
the maximum degree of a tree[11,12].

“Star…”

“Ford” “Fisher”

125

{ }

[ ]

“cast” “r.time” “name”

JSON Edit Distance (JEDI)

“Star…” 125

{ }

“title” “r.time” “cast”

{ }

“Ford” “Fisher”

“Han” “Leia”

JEDI = 5

JSON tree 1 JSON tree 2

16



JSON Similarity Lookup

“Star…”

“Ford” “Fisher”

125

{ }

[ ]

“cast” “r.time” “name”

“Star…”

“Ford” “Fisher”

125

{ }

[ ]

“title” “r.time” “name”

“title” “r.time”

“Star…” 125

{ }

“title” “r.time” “Ford”

[ ]“Star…”

JEDI(tq, t4) ≤ τ

• Definition: 
• Given: distance function JEDI, user-defined threshold τ, and a query JSON tree tq. 
• Goal: retrieve all JSON trees ti from a database D that are similar to tq, i.e., JEDI(tq,ti) ≤ τ. 

• Example: let τ = 5.

Query tree tq Database D

17



• Processing large JSON trees: 
• JEDI verification takes O(n2 d log(d)) time. 

• Processing large databases: 
• |D| tree pairs have to be considered.

Challenges

“Star…”

“Ford” “Fisher”

125

{ }

[ ]

“cast” “r.time” “name”

“Star…”

“Ford” “Fisher”

125

{ }

[ ]

“title” “r.time” “name”

“title” “r.time”

“Star…” 125

{ }

“title” “r.time” “Ford”

[ ]“Star…”

O(n2 d log(d))

Query tree tq Database D

|D|

18



Filter and Verification Framework

Similarity 
Index

Upper 
Bound 
Filter

VerificationDatabase Lookup 
Result

UB > τ

UB ≤ τ

δ ≤ τCandidates

• Overview:

19



JEDI 
VerificationDatabase Lookup 

Result

JEDI ≤ τ

Filter and Verification Framework
• Efficient verification: QuickJedi reduces the runtime by up to one order of magnitude.

19



“Star…”

“Ford” “Fisher”

125

{ }

[ ]

“cast” “r.time” “name”

JEDI Baseline Algorithm

“Star…” 125

{ }

“title” “r.time” “cast”

{ }

“Ford” “Fisher”

“Han” “Leia”

• Dynamic programming algorithm: 
• Process all node pairs in a bottom-up manner. 
• Compute the subtree distance for each node pair.

JSON tree 1 JSON tree 2

20



• Subtree distance computation: consider the edit operation with minimum distance.

v w

v w

v w

Delete v

Insert w

Rename

min{
JEDI Baseline Algorithm

21



• Cost of children matching: 
• v and w are arrays: sequence edit distance (quadratic runtime). 
• Otherwise: minimum-cost bipartite graph matching (cubic runtime).

c1 c2 ci cl ε ε

c’1 c’2 c’j c’l c’l+1 c’m

cost(ci, c’j) = JEDI(ci, c’j)

v

w

JEDI Baseline Algorithm

22



Skipping the Children Matching
• Idea: bound the rename costs. Skip if lower bound exceeds upper bound. 

• Upper bound: insertion and deletion provide an upper bound. 

• Challenge: identify a lower bound that is 
• efficient (applied for each node pair) and 
• effective (skip many matchings).

23



Aggregate Size Lower Bound
• Key ideas: 

• The k-smallest subtrees of the bigger amount of children are deleted. 
• The remaining subtrees are bounded by the size difference. 

 
 
 
 
 
 
 
 

• Efficiency: 
• Maintain an array for constant time computation.

c2c1

v

8 8

c’3c’2c’1

w

6 5 6

2
2 5 + 2 + 2 = 9

24



Similarity 
Index

JEDI 
VerificationDatabase Lookup 

Result

JEDI ≤ τCandidates

Filter and Verification Framework
• Process large databases: JSIM is the first JSON similarity index.

QuickJedi skips the 
children matching and 
reduces the runtime by 
one order of magnitude.

25



Upper 
Bound 
Filter

JEDI 
VerificationDatabase Lookup 

Result

UB > τ

UB ≤ τ

JEDI ≤ τ

Filter and Verification Framework
• Process large trees: JOFilter is a linear time and space upper bound filter.

Similarity 
Index

Candidates

We introduced the 
first JSON similarity 
index.

QuickJedi skips the 
children matching and 
reduces the runtime by 
one order of magnitude.

26



JOFilter Upper Bound
• Goal: send candidates to the result set without verification. 

• Key idea: apply the sequence edit distance on ordered keys. 
 
 
 
 
 
 
 

• Related work: fastest algorithm runs in quadratic time[8]. 

• Challenge: filter applied for each candidate.

“Star…”

“Ford” “Fisher”

125

{ }

“title” “r.time” “cast”

{ }

“Han” “Leia”

“Star…”125

{ }

“cast” “r.time” “title”

“Ford” “Fisher”

{ }

“Han” “Leia”

order by keys

JSON tree 1 JSON tree 2

27



• Key idea 2: for a node in T1 only 2τ + 1 nodes of T2 have to be considered. 
 
 
 
 
 
 
 

• Results: reduce the complexity to linear time and space.

“Star…”

“Ford” “Fisher”

125

{ }

“title” “r.time” “name”

{ }

“Han” “Leia”

τ = 2

“Star…”

“Ford” “Fisher”

125

{ }

[ ]

“name” “r.time” “title”

“title” “r.time”

JSON tree 1 JSON tree 2

JOFilter Upper Bound

27



JSIM JOFilter QuickJediDatabase Lookup 
Result

UB > τ

UB ≤ τ

JEDI ≤ τ

We introduced the 
first JSON similarity 
index.

We reduced the 
runtime of the  
upper bound from  
quadratic to linear.

Candidates

Filter and Verification Framework
• JSON Similarity Lookup:

QuickJedi skips the 
children matching and 
reduces the runtime by 
one order of magnitude.

28



• Datasets: Read (30k trees) and Movies (8.7 million trees). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Result: a similarity index is needed to process large databases.

Scaling to Large Databases

Read Movies

29



• Datasets: StanDev (up to 18k nodes) and Schema (up to 48k nodes). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Result: QuickJedi and JOFilter reduce the runtime by up to two orders of magnitude.

Scaling to Large Trees

StanDev Schema

30



References
[1] F. Li, H. Wang, L. Hao, J. Li, and H. Gao, “Approximate joins for XML at label level”, Information Sciences, 2014. 
[2] T. Akutsu, “Tree edit distance problems algorithms and applications to bioinformatics”, IEICE Transactions on Information and Systems, 2010. 
[3] Z. Lin, H. Wang, and S. I. McClean, “Measuring tree similarity for natural language processing based information retrieval”,  
     International Conference on Applications of Natural Language to Information Systems, 2010. 
[4] M. Pawlik and N. Augsten, “Tree edit distance: Robust and memory-efficient”, Information Systems, 2016. 
[5] K. Zhang, R. Statman, and D. Shasha, “On the editing distance between unordered labeled trees”, Information Processing Letters, 1992. 
[6] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format”, RFC 8259, 2017. 
[7] R. Yang, P. Kalnis, and A. K. H. Tung, “Similarity evaluation on tree-structured data”, 
      ACM SIGMOD International Conference on Management of Data, 2005. 
[8] K. Kailing, H.-P. Kriegel, S. Schönauer, and T. Seidl, “Efficient similarity search for hierarchical data in large databases”,  
      International Conference on Extending Database Technology, 2004. 
[9] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and T. Yu, “Approximate XML joins”,  
      ACM SIGMOD International Conference on Management of Data, 2002. 
[10] Y. Tang, Y. Cai, and N. Mamoulis, “Scaling similarity joins over tree-structured data”, Proceedings of the VLDB Endowment, 2015. 
[11] K. Zhang, “Algorithms for the constrained editing distance between ordered labeled trees and related problems”, Pattern recognition, 1995. 
[12] K. Zhang, “A constrained edit distance between unordered labeled trees”, Algorithmica, 1996.


