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Abstract

Machine emulation is software that reproduces the functionality of hardware, for
example through some form of code interpretation. System virtualization aims at
creating virtual instances of hardware on which it runs, mostly through some form
of context switching and virtual memory. Emulation and virtualization of the same
hardware is supposed to be functionally equivalent while emulation may be sim-
pler to implement than virtualization if performance is less of a concern. This
thesis presents the design and implementation of an experimental hypervisor called
mixter which virtualizes the machine on which it runs through emulation and vir-
tualization. mixter can in fact alternate between emulation and virtualization at
runtime. Its purpose is to bring us closer to identifying methodologies for verifying
the functional equivalence of emulation and virtualization. The software of mixter
is implemented in selfie, a software system that is used for educational purposes.

Keywords: Verification, virtualization, emulation, selfie
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CHAPTER 1
Introduction

Machine emulation and virtualization are two important concepts in computer sci-
ence. Though, most users do not realize that these concepts are used in a number of
well known applications. For example, emulators are used to emulate a smartphone
in mobile application development or to emulate an old video console to play retro
games; whereas, virtualization is mainly used in server applications.

A machine emulator (software) mimics a specific computer architecture (hard-
ware) which may be different to the one that the emulator is executed on. For
example, a smartphone is emulated on a computer when testing a smartphone ap-
plication. Emulation can be achieved via a form of code interpretation which means
that an emulator is capable of executing code that is written for the emulated hard-
ware instruction by instruction. Hence, it is possible to execute software that was
originally developed for another architecture.

Compared to emulators, in virtualization a hypervisor creates virtual instances
of the machine on which it runs, mostly through a form of virtual memory. Instead
of code interpretation, a hypervisor tells the underlying machine to execute the code
for it which is called hosting. The underlying machine switches to the context of
the code that needs to be executed and starts executing it. On the one hand, this
way a performance gain is achieved since a hypervisor avoids code interpretation;
on the other hand, the hosted program is restricted to the underlying hardware
architecture.

Even though, the concepts of an emulator and a hypervisor are different it is
supposed that emulation and virtualization of the same hardware are functionally
equivalent when they execute the same code. This thesis presents mixter, an ex-
perimental hypervisor that is capable of simultaneously emulating and virtualizing
a MIPSter machine. Here, simultaneously means that mixter alternates between
both concepts at runtime. mixter is a first step towards identifying methodologies
for verifying the functional equivalence of emulation and virtualization.

1



2 CHAPTER 1. INTRODUCTION

Dependent on whether mixter is emulating or virtualizing, the context informa-
tion is stored in two different places. First, in case of emulation, mixter executes
the code itself and stores the context information in its own address space. Sec-
ond, in case of virtualization, the code is executed by the underlying machine of
mixter and, therefore, the context information is stored in the address space of the
underlying machine. Hence, the main task for alternating between emulation and
virtualization is to operate on the same context data in both options.

A concept called context caching is introduced that allows mixter to operate
on the same context data independent of emulation and virtualization. With each
context switch an emulator caches the latest context information of the mixter
instance on top of it. Therefore, the emulator is informed about the changes on the
context information stored in the address space of mixter. Additionally, the changes
made by the emulator on the cached context information are written back to the
context in the address space of mixter.

The software of mixter is implemented as part of the selfie project. selfie1 is
a software project used as an educational platform to teach topics like compiler
construction and operating systems. The project includes a self-compiling compiler
(starc), a self-executing emulator (mipster), and a self-hosting hypervisor (hypster).
The mipster emulator is an interpreter of MIPSter code, which is a subset of the
MIPS32[8, 9, 10] architecture. Based on a microkernel within the mipster emulator,
the hypster hypervisor is able to host any MIPSter code. mixter makes use of the
existing structure of selfie and is integrated smoothly by following the same design
principles, namely: self-referentiality, simplicity, and readability. Self-referentiality
for mixter means that it can execute and host another instance of mixter.

With the implementation of context caching, the system calls to create a context
and to map a virtual page to a physical frame are obsolete. In fact, mixter goes
one step further by getting rid of all system calls except context switching. As a
consequence, the microkernel is no longer located within the mipster emulator.

1.1 Outline

The thesis is structured in four chapters starting with the introduction. Prior to
the explanation of mixter it is important to understand selfie and the concepts of
emulation and virtualization which is why they are explained in greater detail. A
more elaborate view on the chapters is given below.

Chapter 1 gives a brief introduction to emulation, virtualization, the selfie
project as well as mixter itself; furthermore, an outline of the thesis is given.

Chapter 2 provides closer insight into the concept and implementation of selfie
before mixter was introduced. It contains an overview of all the different parts of
selfie focusing on the most relevant topics regarding mixter.

Chapter 3 is all about mixter. The concept, theoretical aspects, and the imple-
mentation will be covered in this chapter.

Chapter 4 will end this thesis with a conclusion and remaining future work.

1http://selfie.cs.uni-salzburg.at



CHAPTER 2
System

2.1 Overview

selfie1 is a software project which is being developed by the Computational Systems
Group at the Department of Computer Sciences at the University of Salzburg. It
is used as an educational platform to teach various topics like operating systems,
compiler construction and runtime systems. Even though selfie’s source code is just
one single file with about 7000 lines of code it consists of four major parts:

� starc is a self-compiling compiler which is capable of compiling all of selfie’s
source code. It takes any C* code and generates appropriate MIPSter code
for it where C* is a Turing complete subset of C and MIPSter is a subset of
an instruction set architecture called MIPS32.

� mipster is the name of the self-executing emulator within selfie. It can exe-
cute any MIPSter code compiled with starc.

� hypster is a self-hosting hypervisor and one of the main parts of selfie. Based
on a microkernel within mipster, hypster maintains virtual machines that can
host any MIPSter code as well as selfie itself.

� libcstar is a library written in C* that provides for example bitwise opera-
tions. Therefore, one can use them even though they are not included in the
C* language subset itself.

Each part of selfie is fully self-referential (see Section 2.6) and therefore the whole
project is self-referential as well. Going into every detail of this project would be far
beyond the scope of this thesis. However, there is a draft of a free book2 available
that covers most of selfie in a detailed manner. Nevertheless, all functions of selfie
that are relevant for this thesis will be covered in this Chapter 2.

1http://selfie.cs.uni-salzburg.at
2https://leanpub.com/selfie

3



4 CHAPTER 2. SYSTEM

starc libcstar

mipster hypster

Selfie

Figure 2.1: Different parts of selfie.

2.2 starc - the C* compiler

It could be said that the idea and the very first part of the selfie project was born
via lecturing compiler construction. For many years Professor Kirsch’s students had
to implement their own self-compiling compiler as part of the lecture. Facing the
same task, starc was built with further demands on readability and simplicity. The
source language as well as the target language were kept as minimalistic as possible,
but were still sufficient to cover all functionality of selfie.

Before going into more detail on the first part of selfie, called starc, it is necessary
to introduce some basic terms of compiler theory based on the lecture notes of
Christoph Kirsch. [4]

Machine Code: A sequence of instructions executed directly by a computer’s
central processing unit (CPU). [5]

Compiler: A computer program that transforms source code written in a pro-
gramming language (the source language) into another computer language (the target
language), with the latter often having a binary form known as object or machine
code. The most common reason for converting source code is to create an executable
program. [5]

Single-pass: The compiler passes through the source code only once.

The transformation from source to target language in a single-pass compiler is
processed via several different steps as shown in Figure 2.2.

A given file written in the source language serves as input for a compiler and
is processed by the scanner. The scanner goes through the input file character
by character and combines them to so called tokens. Comparing it to a text file
a scanner would form words out of characters by splitting them, for example, by
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program scanner parser

typechecker
code

generation
binary

characters tokens

syntax tree

arrtibuted treeinstructions

Figure 2.2: Steps taken during a single-pass compilation of a program.[4]

whitespace or punctuation marks. These tokens enable us to execute the next step
called parsing.

Compared to the example of textual input this would be the step from words to
sentences. Similar to a human language, a programming language is defined by a
grammar. According to the given grammar of the input language parsing analyzes
the syntax of the input tokens. There are many different ways of how parsing can
be proceeded, still, selfie uses a LL(1)-Parser. This is a special form of a top-down
parser where the input is parsed from left (therefore, the L) to right and the leftmost
derivation is performed. The input and implementation language of selfie, called
C* (see Section 2.2.1), is designed in a way that the parser only needs to look at
one token ahead, at most, in order to perform the analysis, this is where the 1 in
LL(1)-Parser comes from.

The sense of type checking is self explanatory. An example of it would be to
make sure that there is no string assigned to an integer variable.

The last step is called code generation. The compiler needs to generate code
that is semantically equivalent to the input but written in the target language. In
order to be able to create machine code the instructions have to be encoded with
specified formats by the compiler. A detailed view on encoding can be found in
Section 2.2.4.

2.2.1 The C* programming language

As stated above one aim of selfie is to keep everything as minimalistic as possible
while still providing full functionality. Therefore, a tiny subset of the well known
programming language C was chosen as source language for the starc compiler (and
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the source code of selfie itself).

Without describing every detail of the grammar some interesting facts should
be pointed out. As already mentioned above the grammar is LL(1). Regarding
data types C* only provides two different ones, namely signed 32-bit integers and
pointers to them. Consequently, the grammar does not provide any compositional
data structures like arrays or structs. Any collection of data is grouped consecutive
in memory and is accessed via pointers and offsets. In order to get the data of a
given address it is important to have a dereference operator ∗ which is where the
name C* comes from. Furthermore, C* comes with five built-in functions namely
exit, malloc, open, read, write. These functions are implemented within selfie as
so-called system calls. A detailed explanation can be found in Section 2.5.1. More
details about the C* programming language are described by Kirsch [6].

2.2.2 The MIPSter instruction set architecture

The same design criteria that are used for the source language are applied to define
the target language of the compiler. Like before a minimalistic subset of a well
known standard is used. MIPSter is an instruction set architecture (ISA) that
provides 17 well chosen instructions of the MIPS32 standard[8, 9, 10] (addiu, addu,
beq, bne, divu, j, jal, jr, lw, mfhi, mflo, multu, nop, slt, subu, sw, syscall).
These instructions are again a tiny but powerful subset capable of implementing all
of selfie.

2.2.3 Compiling

After covering the basics of the source language and the target language, now, the
focus is at the process of compilation which is schematically depicted in Figure 2.3.
The starc compiler operates as a single-pass and recursive decent compiler and can
take any given C* code as input which is compiled to MIPSter code including starc
and selfie itself. This is called self-compiling and is explained in Section 2.6.

2.2.4 Encoding

In order to create MIPSter machine code all instructions are encoded with a special
format. Each MIPSter instruction can be categorized according to one of three
different formats based on the MIPS CPU instruction formats[8]:

� R-Format:
addu, divu, mfhi, mflo, multu, nop, slt, subu, syscall

� I-Format:
addiu, beq, bne, lw, sw

� J-Format:
j, jal
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starc

int* main() {
int* foo;

foo = ”Hello World!”;

while (foo* != 0) {
write(1, foo, 4);

foo = foo + 1;
}
}

Input: C*

[. . . ]
lw $t0, -4($fp)
addiu $t1, $zero, 1
subu $t0, $t0, $t1
beq $zero, $t0, 4[0x238]
nop
addiu $t0, $zero, 0
beq $zero, $t0, 2[0x23C]
[. . . ]

Target: MIPSter

Figure 2.3: starc - the C* compiler.

Figure 2.4 gives a detailed view of how instructions of all formats have to be
encoded.

opcode rs rt rd 0000 function

6 5 5 5 5 6

R-Format

opcode rs rt immediate

6 5 5 16

I-Format

opcode instruction index

6 26

J-Format

Figure 2.4: Different encoding formats of MIPSter.[8]

When encoding is performed the input is an instruction of the target language
and the result is a binary number that holds all the information about this instruc-
tion. The example in Figure 2.5 shows each step in detail. First, the according
number of the instruction has to be looked up, as well as the register numbers.
The integer at the right is already an immediate so nothing has to be performed
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in the first step. Next, all the numbers of step one have to be translated in binary
numbers of the size given by the according format (in the example format I). Last,
all the numbers are appended one after another in the way that is defined in the
format. This is done with shift and addition operators. Finally, a 32-bit integer
that represents the instruction ADDIU $t0, $zero, 135 is created.

6 bit 5 bit 5 bit 16 bit

ADDUI $t0, $zero, 135

9 8 0 135

001001 01000 00000 0000000010000111

Figure 2.5: Example of encoding a MIPSter instruction.[8]

2.3 libcstar - the C* library

As discussed in Section 2.2.1 the design of C* is minimalistic. This is why a lot of
common programming language features such as bit operations (for example shift
left or shift right) are not part of C*. Since there is no linker available within selfie,
it also includes a C* library named libcstar which provides several features that
are shown in Figure 2.6. Another example is the printing of strings. The library
libcstar provides a print function that is more convenient than the use of the write
function for each character.

To access the functionality of libcstar in another C* program, the library parts
can easily be copied from the selfie source code.

2.4 The mipster emulator

2.4.1 Overview

As already mentioned above the emulator within selfie is called mipster. Before
going into detail, it is necessary to have a look at emulators in general.

Emulator: Software that enables one computer system (called the host) to be-
have like another computer system (called the guest). [5]

App development is a well known example where emulators are used. Almost
every integrated development environment (IDE) used for mobile application devel-
opment comes with software that emulates common mobile devices and operating
systems, for example Android SDK.
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libcstar

bit manipulation
print strings

integer to ASCII
conversion

ASCII to integer
conversion

string manipulation

Figure 2.6: libcstar - C* library.

Now a short overview of the guest system that is emulated by mipster is given.
Since starc compiles C* code to MIPSter code, a machine that can execute MIPSter
instructions is needed. Furthermore, the machine consists of three different units:

� Arithmetic unit:
The arithmetic unit is a collection of 32 so called general purpose registers,
each of them can hold 32 bits. Table 2.1 gives detailed information about all
those registers and their purposes.

� Control unit:
This is a small number of registers that are absolutely necessary for the ma-
chine to interpret code, like the program counter (pc), the instruction register
(ir), break (brk) and the page table pointer (pt). One could say that even
some of the general purpose registers are part of the control unit, e.g. register
number 31 which is used for return addresses.

� Store:
Store contains all the memory that the machine provides to the guest system.
All the information is stored in it. The memory is organized as depicted in
Figure 2.7.

Program counter (pc): A processor register that indicates where a computer
is in its program sequence. In most processors, the pc is incremented after fetching
an instruction, and holds the memory address of (”points to”) the next instruction
that would be executed. [...] [5]

Instruction register (ir): A processor register that holds the instruction that
is to be executed. The process of writing an instruction into ir is called fetching.



10 CHAPTER 2. SYSTEM

stack

memory

heap

globals variables
& strings

code

Figure 2.7: Memory layout of the emulated memory.[5]

Program break (brk): A processor register that holds a pointer to the end
of the static memory. The static memory contains the code, global variables and
strings.

Page table: A page table is a data structure used to resolve virtual addresses
to physical addresses. This is done by mapping one virtual page to one physical
frame in the table. For each virtual memory address space a page table is needed.

Page table pointer (pt): A processor register that holds a pointer to the page
table of the process currently executed.

These 32 general and various special purpose registers alongside memory hold
all the information, see Table 2.2. This information at a given time is called the
machine state. Here ”at a given time” means between two instructions. After
executing another instruction the whole system and consequently the machine state
as well may look completely different.

2.4.2 Interpretation

mipster can be invoked in two different ways as shown in Figure 2.8. On the one
hand the emulator works as an unoptimized MIPSter interpreter, on the other hand
it can also be used as a disassembler. This section covers all the important infor-
mation about the interpreter while the disassembler is described in Section 2.4.3.



2.4. THE MIPSTER EMULATOR 11

Register Number Alternative Name Description

0 zero the value 0.

1 $at
(assembler temporary) reserved by the
assembler.

2− 3 $v0− $v1
(values) from expression evaluation and
function results.

4− 7 $a0− $a3
(arguments) First four parameters for
subroutine. Not preserved across
procedure calls.

8− 15 $t0− $t7
(temporaries) Caller saved if needed.
Subroutines can use w/out saving. Not
preserved across procedure calls.

16− 23 $s0− $s7

(saved values) - Callee saved. A
subroutine using one of these must save
original and restore it before exiting.
Preserved across procedure calls.

24− 25 $t8− $t9

(temporaries) Caller saved if needed.
Subroutines can use w/out saving. These
are in addition to $t0− $t7 above. Not
preserved across procedure calls.

26− 27 $k0− $k1
reserved for use by the interrupt/trap
handler

28 $gp
global pointer. Points to the middle of
the 64K block of memory in the static
data segment.

29 $sp
stack pointer. Points to last location on
the stack.

30 $s8/$fp
saved value / frame pointer. Preserved
across procedure calls.

31 $ra return address.

Table 2.1: General purpose registers in MIPS [3].

Value Description

pc Program counter
ir Instruction register
pt Page table pointer
brk Break between code, data, and heap
regs 32 general purpose registers
reg hi Used for multiplication and division
reg lo Used for multiplication and division
memory Emulated memory array

Table 2.2: Machine state of mipster.
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mipster
interpret

MIPSter
code

mipster
disassemble

binary
MIPSter
assembly

Figure 2.8: mipster can be invoked in two different ways.

An interpreter is a piece of software that simply executes one instruction after
another. This is done in three steps:

� fetching an instruction,

� decode it and

� execute it.

Basically, this happens in a loop until the interpreter is interrupted by an exception
(for example timeout, page fault, etc.). The next sections will contain detailed
information about all of the steps mentioned above.

2.4.2.1 Fetching instructions

The information of the machine state is needed for executing a guest on mipster
by executing one instruction after another. Before an instruction can be executed
the emulator has to fetch it first. This is done with the help of two values from the
machine state, namely the program counter and the page table pointer.
The program counter contains the address to the next instruction that is to be
executed. Since this address is virtual, mipster has to translate it via a the given
page table in pt.

2.4.2.2 Decode instructions

The data that is produced by fetching an instruction is a 32-bit integer value. Ac-
cording to the MIPSter standard formats for encoding the instruction is decoded
now. Encoding an instruction is described in Section 2.2.4, basically decoding ap-
plies all these steps in reversed order.

When an instruction is decoded the first step is to extract the opcode. A brief
look on Figure 2.4 shows that the opcode is at the same position for every format.
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. . .

machine state

pc

. . .

pt

. . .

page table

instruction

Figure 2.9: Fetching an instruction.

The reason for this becomes quiet clear in the process of decoding, because the
opcode is necessary to choose the correct format before all other values are decoded.
Knowing the correct format in combination with bit shifting allows us to decode the
32 bit integer into the according values needed for the instruction. The full concept
of decoding is depicted in Figure 2.10.

001001 01000 00000 0000000010000111

001001 01000000000000000010000111

opcode = 9 select format

9 8 0 135

ADDUI $t0, $zero, 135

I-Format

Figure 2.10: Decoding an instruction.

2.4.2.3 Execute instructions

The concept of execute is explained easily. For each MIPSter instruction the em-
ulator has a concrete implementation of its functionality. Since all the parameters
are given in the defined registers from decoding mipster only needs to execute on
them. As an example Listing 1 contains selfie’s implementation of the jump (jr)
instruction. The code is quiet simple. Except from debugging the only thing that
happens is that the program counter is set to a given value from the parameter.
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2.4.2.4 Traps

As already mentioned above, interpretation is done in a loop and may be interrupted
by a trap. In selfie this is done by throwing an exception. There may be several
reasons for an exception:

� Page faults:
Whenever a virtual address is not mapped in the corresponding page table a
page fault occurs.

� Timer interrupts:
selfie implements a timer that interrupts the interpreter after a given amount
of instructions.

� Invalid address accesses:
If an invalid virtual address is accessed by the interpreted program.

� Unknown instructions:
The actual interpreted instruction is not in the set of MIPSter instructions.

1 void fct_jr() {

2 if (debug) {

3 printFunction(function);

4 print((int*) " ");

5 printRegister(rs);

6 if (interpret) {

7 print((int*) ": ");

8 printRegister(rs);

9 print((int*) "=");

10 printHexadecimal(*(registers+rs), 0);

11 }

12 }

13
14 if (interpret)

15 pc = *(registers+rs);

16
17 if (debug) {

18 if (interpret) {

19 print((int*) " -> $pc=");

20 printHexadecimal(pc, 0);

21 }

22 println();

23 }

24 }

Listing 1: mipster’s implementation of the jr call.
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2.4.3 Disassembling

After discussing the interpreter of mipster in a detailed manner the second operation
mode of mipster is briefly described here.

Disassembler: A computer program that translates machine language into as-
sembly language the inverse operation to that of an assembler. [5]

1 0x1CBFC(~7088): 0x00081021: addu $v0,$zero,$t0

2 0x1CC00(~7088): 0x08007302: j 0x7302[0x1CC08]

3 0x1CC04(~7088): 0x00000000: nop

4 0x1CC08(~7089): 0x27DD0000: addiu $sp,$fp,0

5 0x1CC0C(~7089): 0x8FBE0000: lw $fp,0($sp)

6 0x1CC10(~7089): 0x27BD0004: addiu $sp,$sp,4

7 0x1CC14(~7089): 0x8FBF0000: lw $ra,0($sp)

8 0x1CC18(~7089): 0x27BD000C: addiu $sp,$sp,12

9 0x1CC1C(~7089): 0x03E00008: jr $ra

10 0x1CC20(~7089): 0x00000000: nop

Listing 2: Example output of mipster ’s disassembler.

As shown in Figure 2.8 mipster can take any MIPSter machine code and outputs
MIPSter assembly. Compared to machine code the output (see Listing 2) is easily
readable for humans.

2.4.4 Machine context

The purpose of a machine context is to store the machine state of a specific instance.
While executing an instance, the machine state of the emulated processor changes
dynamically. It is important to save the current machine state before a context
switch occurs, in order to be able to resume the execution of this instance when
it is scheduled again. In fact, these are the two main steps of context switching;
saving the current machine state in the according machine context and loading the
values of the machine context that is to be executed next. A selfie instance creates
a context for an instance on top of it. Furthermore, a duplication of each context is
created in the address space of the emulator. Section 2.8.1 describes in detail which
contexts are created in which address spaces.

However, a context is uniquely identified with an integer number assigned by
the microkernel. Figure 2.11 shows the structure of a machine context and a brief
description of all the fields. While fields like id, pointer to registers, or page ta-
ble pointer remain the same during the whole execution; others, like the program
counter may change after any instruction. The arrows at the next and prev field
indicate pointers since all machine contexts are organized as a list.
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data, and heap

ID of parent context

Figure 2.11: Structure of a machine context in selfie.

2.4.5 Microkernel

Microkernel: A piece of software that provides as little functionality as possible
which is necessary to implement an operating system.

A special characteristic of selfie is the fact that the microkernel sits within the
emulator. The microkernel provides a bunch of important functionality that is nec-
essary in order to implement hypster, a hypervisor within selfie, see Section 2.5. Like
all built-in library functions of C* system calls are used to access the functionality
of the microkernel. A detailed view on system calls can be found in Section 2.5.1.
The implementation is inspired by the work of Jochen Liedtke[7]. The three main
areas that the microkernel is taking care of are:

� Machine contexts:
The first functionality concerns machine contexts. E.g., a hypster instance
that runs on top of mipster creates a virtual machine to host another in-
stance. Therefore, hypster needs to create a new machine context and tell
the microkernel via system call to do so as well. The following list shows
all the different system calls that the microkernel provides regarding machine
contexts:

– ID:
Get the ID of the currently executing context.

– create:
Creates a context in the address space of the microkernel.
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– delete:
Deletes a context in the address space of the microkernel.

– switch:
Switches from one context to another.

� Virtual memory:
Similar to machine contexts, the information about virtual memory has to be
passed down to mipster. Here there is only one system call:

– map:
Map a virtual page to a physical frame in the address space of the mi-
crokernel.

� Status:
As part of the system state the emulator holds a value called machine status.
It is used in case of an exception to hold the exception number as well as
further information about the exception like the page number of a faulting
page.

– get:
Return the machine status.

2.5 The hypster hypervisor

Since hypster is the hypervisor implemented in selfie the following definitions of
virtualization and hypervisors need to be discussed before going into every detail.

Virtualization: The act of creating a virtual (rather than actual) version of
something, including virtual computer hardware platforms, operating systems, stor-
age devices, and computer network resources. [5]

Hypervisor: A piece of computer software, firmware or hardware that creates
and runs virtual machines. A computer on which a hypervisor runs one or more
virtual machines is called a host machine, and each virtual machine is called a guest
machine. [5]

Hosting: Rather than executing a binary itself, a hypervisor asks the machine
on which it runs to do so. This execution by the underlying machine is called
hosting.

Compared to mipster which emulates a machine, hypster hosts it. This means
that hypster creates MIPSter virtual machines and instead of executing instructions
itself it orders mipster to execute them, see Figure 2.12. Of course this has an
enormous impact on the runtime. In fact, running multiple instances of mipster on
top of each other leads to an exponential growth of runtime.

In order to be able to provide all the operating system functionality hypster
needs to be able to access the microkernel in the emulator. The way this is imple-
mented is called system calls and is explained in the next Section 2.5.1.
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hypster

mipster

vm

Figure 2.12: hypster - the hypervisor.

2.5.1 System calls

As already mentioned in Section 2.4.5 hypster is based on a microkernel that is
located within mipster. Here ”based on” means that the microkernel provides im-
portant functionality regarding machine contexts, status and virtual memory. In
the hypster implementation system calls, also called hypster calls, are used to access
these functions of the microkernel. The technique of system calls is also used for
implementing the built-in library functions to bootstrap the compiler. The code
and concept is almost identical for any of the two fields of application. Still, the
built-in library functions are slightly simpler. In addition, it is important to take
into consideration whether the hypster call was called within the emulator or on top
of it. First, however it is of interest what it means when something is implemented
as a system call.

Taking a closer look at the implementation of the five built-in library functions
(exit, malloc, open, read and write) in the source code of selfie it becomes clear that
there is a common pattern. There are two different procedures for each of them.
One is called emit, the other is called implement. Listing 3 and Listing 4 show
the according functions of the exit system call. A detailed explanation of all the
details of a system call on the basis of the exit example is given in the following
paragraphs. The concept is the same for all the other system calls as well.

The emit function is used to produce wrapper code that invokes the system call.
Notice that this function is always invoked by the compiler. First, an entry for exit
in the symbol table. Second, the arguments are handled by loading and removing
them from the stack. Third, the system call itself is invoked. Every system call
has its own number in order to be able to uniquely identify it; this number is first
loaded before the call is finally invoked. Of course, exit never returns since the
calling instance is exited. However, this is not the case for any of the other four
library functions.
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1 void emitExit() {

2 createSymbolTableEntry(LIBRARY_TABLE, (int*) "exit", 0,

3 PROCEDURE, VOID_T, 0, binaryLength);

4
5 emitIFormat(OP_LW, REG_SP, REG_A0, 0);

6
7 emitIFormat(OP_ADDIU, REG_SP, REG_SP, WORDSIZE);

8
9 emitIFormat(OP_ADDIU, REG_ZR, REG_V0, SYSCALL_EXIT);

10 emitRFormat(0, 0, 0, 0, FCT_SYSCALL);

11
12 // never returns here

13 }

Listing 3: Emit function of the exit system call invoked by the compiler.

The actual functionality of the exit call is coded in the implement procedure.
This function differs from system call to system call. In the case of the exit call
the exitCode is read from the specific register A0. A check guarantees that the
exitCode is within the range of a signed 16-bit integer. To exit the caller instance an
exception is thrown with the corresponding exception and exitCode. As explained
in Section 2.4.2.4 the emulator stops interpreting and exits the caller instance.

1 void implementExit() {

2 int exitCode;

3
4 exitCode = *(registers+REG_A0);

5
6 if (exitCode > INT16_MAX)

7 exitCode = INT16_MAX;

8 else if (exitCode < INT16_MIN)

9 exitCode = INT16_MIN;

10
11 throwException(EXCEPTION_EXIT, exitCode);

12
13 // debugging code

14 }

Listing 4: Implement function of the exit system call invoked by the emulator.

So far, the general structure and implementation of a system call have been
introduced. In case of hypster calls just a little more code has to be added. The
reason for this procedure is that there is a difference between calling a hypster
call within mipster or on top of it. Within mipster the compiler should not care
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about the emit function while generating code. Therefore, there is an additional
procedure for hypster within mipster. Listing 5 shows the hypster create() function
which is only executed at boot level zero which means by the selfie instance that was
invoked first. The emit and implement procedure remains the same as before. Even
though, there are now two different implementations of each system call there is no
difference in invocation for most of them. The only exception is the context switch
system call where an invocation within mipster needs to call the interpreter on the
target context. However, on top of mipster the interpreter is already activated,
interpreting the actual context. The only thing to do is to switch to the target
context.

1 int hypster_create() {

2 return doCreate(selfie_ID());

3 }

4
5 int selfie_create() {

6 if (mipster)

7 return doCreate(selfie_ID());

8 else

9 return hypster_create();

10 }

Listing 5: Additional procedure for hypster calls.

2.6 Self-referentiality

A word that often occurs along with selfie and that has also been mentioned several
times in this thesis by now is ”self-referentiality”. Instead of a definition its meaning
is explained directly via the example of selfie and its components.

First, speaking of the compiler starc it can be said that it is self-compiling since
it can compile any C* code and, therefore, selfie and starc themselves.

An emulator like mipster is called self-executing if it can execute itself. In selfie
mipster can run on top of another instance of mipster.

The same accounts for hypster. A hypervisor is called self-hosting if it can host
itself. Again, hypster can run on top of itself and, therefore, is self-hosting.

Due to the self-referentiality of all parts of selfie the whole project is called self-
referential. Furthermore, in selfie it is possible to run hypster on mipster and vice
versa. Each of the steps above is shown in Figure 2.13.
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Figure 2.13: Self-referentiality

2.7 Compilation and execution

So far the focus was on the different parts of selfie, the concept and some imple-
mentation details. Now an explanation of how the source code can be built and
executed is given.

At the beginning of this Chapter it has been mentioned that all of selfie’s code
is within a single file and is written in the C* programming language. Since C*
is a real subset of C, any common C compiler can be used to compile the whole
project. The output is an executable version of selfie. Therefore, starc, mipster and
hypster can be executed on this machine. Using parameters, the user can specify
which parts of selfie should be executed in which order and further information on
virtual memory size for mipster or hypster can be given. A complete list of the
parameters can also be found in List 2.7 which has been taken from the official
GitHub repository of selfie.3

� The -c option invokes the C* compiler on the given list of source files compiling
and linking them into MIPSter code that is stored internally.

� The -o option writes MIPSter code produced by the most recent compiler
invocation to the given binary file.

3https://github.com/cksystemsteaching/selfie
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� The -s option writes MIPSter assembly of the MIPSter code produced by the
most recent compiler invocation including approximate source line numbers
to the given assembly file.

� The -l option loads MIPSter code from the given binary file. The -o and
-s options can also be used after the -l option. However, in this case the -s
option does not generate approximate source line numbers.

� The -m option invokes the mipster emulator to execute MIPSter code most
recently loaded or produced by a compiler invocation. The emulator creates
a machine instance with size MB of memory. The source or binary name
of the MIPSter code and any remaining ... arguments are passed to the
main function of the code. The -d option is similar to the -m option except
that mipster outputs each executed instruction, its approximate source line
number, if available, and the relevant machine state.

� The -y option invokes the hypster hypervisor to execute MIPSter code similar
to the mipster emulator. The difference to mipster is that hypster creates
MIPSter virtual machines rather than a MIPSter emulator to execute the
code.

� The -min and -mob options invoke special versions of the mipster emulator
used for teaching.

With the generated executable starc can be invoked to perform self-compilation
as shown in Figure 2.14. According to the parameters given above the call would
look like this:

$ ./selfie -c selfie.c -o selfie.m (2.7.1)

cc

compiler

selfie.c

C* code

selfie

executable

./selfie

starc

selfie.c

C* code

selfie.m

MIPSter binary

Figure 2.14: Building process of selfie.
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Since mipster and hypster instances can be stacked in any possible way, complex
calls with the -m and -y options can be built. Be careful, as explained in Section 2.5
running several instances of mipster on top of one another leads to exponential
execution times.

More examples can be found on the GitHub page of selfie. Nevertheless, the
following example call is given:

$ ./selfie -l selfie.m -m 3 -l hello.m -y 2 (2.7.2)

In Example 2.7.2, a mipster instance is created, on top of it sits a hypster which
hosts a MIPSter binary called hello.m in a virtual machine. This configuration is
used in Section 2.8 to explain the memory layout that is created by selfie.

2.8 Memory organization

This Section covers probably the most important information that is needed to
understand the core concept of this thesis. The two main questions that will be
answered are:

� How is memory organized within selfie?

� Which information is stored in which address spaces?

2.8.1 Memory layout

The memory layout of a single selfie instance has already been briefly discussed in
Section 2.4. This section provides more details and targets the question what the
memory layout looks like if a selfie instance runs on top of another selfie instance.

mipster and hypster are both creating a virtual memory space that is used to
run a program on top of it. When introducing mipster, the layout of the created vir-
tual memory space was examined. In fact, the memory layout is organized entirely
the same way by hypster. One question that remains is: what does the memory
layout look like if multiple instances of selfie are run on top of each other?

To answer this question it is necessary to take a look at the concept of virtual
memory. As stated above, mipster as well as hypster is creating a virtual memory
space for each instance that they are emulating or hosting. Therefore, each instance
can operate on a virtual address space starting from virtual address 0 up to a given
memory size. This implicates that if instances are run on top of each other, like
in Example 2.7.2, the virtual address spaces will become nested. The resulting
memory layout from the example before is depicted in Figure 2.15.

To finally resolve a virtual address to a physical address a page table is needed.
Such a page table exists for each virtual address space and maps virtual pages to
physical frames. Figure 2.16 sketches the memory layout together with page tables
of the example.
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Figure 2.15: Memory layout of Example 2.7.2.

In selfie the emulator needs to know all these page tables in order to be able
to resolve all addresses, since the emulator may interpret all the created instances
on top of it. The page table information is passed via system calls by all these
instances on top of the emulator, as already explained in Section 2.4.5 and Sec-
tion 2.5.1. Therefore, in selfie there are duplicates at the emulator level not only of
each page table but also of each machine context. This concept will be examined
more closely in the following Section 2.8.2.

Another important fact that can be seen in Figure 2.16 is that contiguous virtual
addresses are not contiguous in physical memory. Theoretically, two successive
allocation calls could allocate one memory chunk at the beginning and one memory
chunk at the end of the physical memory.

2.8.2 Duplication of machine contexts

As already stated above Figure 2.16 is not correct or at least does not show the full
information. As explained in Section 2.4.5, the microkernel is implemented within
mipster and handles machine contexts and virtual memory. Every selfie instance
creates a machine context in its own address space for the instance running on top
of it. Furthermore, a duplication of each machine context is created by the micro-
kernel within the address space of the emulator. These duplications are used by the
emulator to access the context information and to translate virtual addresses while
interpreting an instance.



2.9. RISC-V PORT 25

There are always two context creation calls for each instance. First, the mi-
crokernel is invoked to create a new context in the address space of the emulator.
This has to be done first to get back a unique ID from the microkernel. After
that an instance can create the context with the ID in its own address space. So,
which machine contexts and page tables are created in which address spaces in
Example 2.7.2?

mipster is invoked first. Therefore, mipster is said to be at boot level zero.
Since the microkernel is part of the emulator, mipster is furthermore said to be at
microkernel boot level. First, mipster creates a context of the instance running on
top of it (hypster) at physical memory. Since the emulator created the context, no
duplication is needed. Next, hypster is invoked to run on top of mipster. A context
for the created virtual machine is needed. Following the steps from above hypster
invokes the microkernel which creates a context at boot level zero and gives back
the new ID. Last, hypster creates the context of the virtual machine in its own
address space.

The result is visualized in Figure 2.17. Notice, that the address space of mipster
is in the physical memory and the address space of hypster is in the virtual memory
of mipster.

2.9 RISC-V port

During the work of this thesis another team finished working on a RISC-V4 porta-
tion5 of selfie. The RISC-V[1, 2] project was initiated at the University of California,
Berkeley in 2010. The two major differences are targeting starc and mipster.

� starc: The compiler no longer targets MIPSter. Instead another subset of
an open instruction set architecture called RISCY is the new target. The
instruction set of RISCY is a well chosen subset of RISC-V instructions. Like
MIPS, RISC-V is as the named suggests, a reduced instruction set architecture
(RISC).

� mipster: The emulator needs to be changed as well of course. rocstar is the
name of a RISCY emulator implemented within selfie. The porting process
did not violate the self-reference property of selfie.

This is just additional information regarding the selfie project. As will be seen in
Chapter 3 the implementation of mixter is absolutely independent of the underlying
architecture. It can easily be ported to the RISC-V implementation. Nevertheless,
the port was not part of this thesis and remains future work.

4https://riscv.org
5https://github.com/cksystemsteaching/selfie/tree/riscv
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CHAPTER 3
Implementation

3.1 Problem

So far, all the necessary information regarding selfie and its components have been
discussed. Based on this system, mixter implements another new part of selfie.
Compared to mipster and hypster, mixter should not be restricted on either emu-
lating or hosting. In fact, mixter virtualizes a MIPSter machine through alternating
between emulation and virtualization.

Figure 3.1 shows an example configuration of selfie executing a mixter instance
on top of a mipster instance. The mixter emulator runs a program called hello.c
which is written in the C* programming language. Now, an explanation of emula-
tion and virtualization in mixter based on the example of Figure 3.1 follows.

Emulation: hello.c is executed by mixter
In case of emulation, mixter acts as mipster. Therefore, the code of hello.c is in-
terpreted by mixter as described in Section 2.4.2. Independent of emulation and
virtualization, mixter creates a virtual address space to execute the C* program
and holds the page table for that virtual address space in its own address space
which allows mixter to translate the virtual addresses. As a result, mixter is able
to fetch and execute the code of hello.c. Furthermore, the context information is
stored in a context created by mixter in its own address space.

Virtualization: hello.c is hosted by mixter
Notice that mixter needs to virtualize a MIPSter machine, therefore, it has to be
executed on top of one. This can be achieved, for example, by running mixter on
top of a mipster instance. The mixter instance acts conform to hypster when host-
ing another instance. Instead of interpreting the code like before with emulation,
in virtualization, a context switch happens. This means that in the example of

29
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Figure 3.1: Address spaces, machine context and page table locations in a selfie
configuration including mixter.

Figure 3.1, mixter tells the mipster instance below to execute hello.c for it. It is
important that the emulator knows about the page table that is needed to translate
the virtual address space where hello.c is located. Before the implementation of
mixter as well as after, the emulator has a context and a page table in its address
space for each selfie instance running on top of it. Therefore, the emulator is able
to translate virtual addresses of all address spaces.

Even though the process of executing and hosting is different, emulation and
virtualization of the same hardware is supposed to be functionally equivalent. The
implementation of mixter is motivated by the task to find methods for verifying the
functional equivalence of emulation and virtualization.

Another example configuration where mixter is used within selfie is depicted in
Figure 3.2. Two mixter instances are illustrated that are running on top of a mip-
ster instance. This figure shows another property of mixter, called self-referentiality.
Like all other components of selfie, mixter should be able to run on top of another
mixter instance.

It is important to know that mixter does not emulate and virtualize at the same
time; instead, it can alternate between emulation and virtualization an instance at
runtime. Figure 3.2 shows all possible execution scenarios where instances executed
by mixter are underlined dotted and instances hosted by mixter are underlined
dashed. Note that hello.c in the second line illustrates two different instances.
First, hosted by mixter2 of the second line and second, executed by mixter2 of the
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third line.

mipster

mixter1

. . . . . . . .mixter2

. . . . . . .hello.c

. . .hello.c

mixter2 hello.c

Figure 3.2: Example configuration of selfie using mixter.

As stated above, the context information is stored in different contexts in dif-
ferent address spaces depending on whether mixter is executing or hosting. The
main task for introducing simultaneous emulation and virtualization is to operate
in either way on the same context data. In the actual implementation of selfie a
second context is created for each instance, via a system call, by the microkernel.
Therefore, the emulator has all the necessary information to interpret all instances
running on top of it. However, an instance on top of the emulator cannot access
these contexts created by the microkernel. Therefore, another concept is needed
that allows the emulator to access the contexts in the virtual address spaces of the
instances running on top of it. These virtual contexts are located in different virtual
address spaces. As a consequence, a technique is needed that allows the emulator to
translate virtual addresses. A first attempt would be to translate a virtual address
by looking up multiple page tables and translating the respective address address
space by address space. When running several selfie instances on top of each other,
each instance creates its own virtual memory space as shown in Figure 2.15. In this
example, a virtual address in the hypster address space would be first translated
into a virtual address of the mipster space. Further, the mipster virtual address is
again translated into a physical address by another page table. This approach is
complex and leads to an overhead for virtual memory accesses, especially for deeply
nested virtual address spaces. In mixter, another concept to access virtual memory
by the emulator, called context caching, is implemented. The details are described
in Section 3.2.

Due to the implementation of context caching, the system calls to create a
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context and to map a page to a frame are obsolete and not used anymore. In fact,
mixter goes one step further and gets rid of all other system calls except context
switching. Hence, the microkernel is no longer part of the emulator in mixter.
Concepts and implementation details regarding the extraction of the microkernel
are explained in Sections 3.3, 3.4, 3.5, and 3.6.

3.2 Context caching

3.2.1 Problem

Context caching is used within mixter to enable the emulator to translate virtual
addresses. As discussed in Section 2.8.2 there are always two machine contexts for
each instance, one created by the microkernel in its own address space and one at
the according virtual address space. This also includes all the data that are part of
the machine context as well as registers and the page table.

A mixter instance is always running on top of at least one mipster instance.
Consequently, an instruction is executed by the emulator in case that mixter is
acting as a hypervisor. Still, mixter may act as emulator and executes the instruc-
tion itself. Therefore, it is necessary that in any case the system operates on the
same context data which requires the emulator to access the virtual context of all
instances running on top of it and translate their virtual addresses.

Basically, the emulator is able to translate every virtual address into a physical
address. A virtual address would be translated address space by address space with
multiple page tables until the physical address is reached as described in Section 3.1.
Since this approach is complex and leads to a translation overhead when accessing
virtual memory, mixter implements another technique called context caching.

The basic idea is simple, every time a context switch happens the emulator
caches the virtual context of the context to be executed in a local copy, which is
later on called ”context restore”. On the other hand after a change at a local copy
the updates have to be written back to the virtual context, which is called ”context
save”. So, the aim is to have consistent data between the locally cached context
and the virtual context.

The following information of context may change throughout the execution and
therefore have to be considered for saving and restoring:

� Program counter

� Lo register

� Hi register

� All other registers

� Program break
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� Exception

� Faulting page

� Exit code

� all newly allocated pages (restore only)

The list of context information contains fields that was not introduced in Chap-
ter 2, the reason is that this information was added during the implementation of
mixter. All newly added fields will be introduced in the following sections with a
detailed explanation of their purpose.

3.2.2 Implementation

The two main questions that occur while implementing context caching are where
the context has to be cached and how?

As already stated above restoring the context is done with every context switch.
Before the emulator loads the machine state of the context that is executed next it
makes sure that it has the most recent data. The actual context switch is imple-
mented by loading the values of the context and store them in the machine state
variables (pc, registers, loReg, hiReg, pt). This can be seen in the implementation
of the doSwitch function in Listing 1.

1 void doSwitch(int* toContext, int timeout) {

2 int* fromContext;

3
4 fromContext = currentContext;

5 restoreContext(toContext);

6
7 pc = getPC(toContext);

8 registers = getRegs(toContext);

9 loReg = getLoReg(toContext);

10 hiReg = getHiReg(toContext);

11 pt = getPT(toContext);

12
13 if (getParent(fromContext) != MY_CONTEXT)

14 *(registers+REG_V1) = (int) getVirtualContext(fromContext);

15 else

16 *(registers+REG_V1) = (int) fromContext;

17
18 currentContext = toContext;

19
20 // debugging code

21 timer = timeout;
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22 }

Listing 1: Restoring and switching the context in selfie.

Saving the context is done in two different positions in the code. First, after
interpreting all the changes have to be written back to the virtual context, see
Listing 2. Furthermore, this function shows how a context switch is implemented
for mipster. doSwitch is implemented as shown in Figure 1. After that the emulator
starts interpreting in runUntilException. In the last step, as already mentioned,
the changes on the local context are saved in the virtual context.

1 int* mipster_switch(int* toContext, int timeout) {

2 doSwitch(toContext, timeout);

3
4 runUntilException();

5
6 saveContext(currentContext);

7
8 return currentContext;

9 }

Listing 2: Wrapper function for context switching of mipster.

Second, the context is saved in the implementSwitch function. As explained in
Section 2.5.1 the implement function is invoked by the emulator, which saves the
context of the currently executed instance. After that, the doSwitch function is
called. The cacheContext function within the arguments of the doSwitch function
tries to find the local context information of the context to be executed. In case
there is no such context it allocates a new one for this instance.

1 void implementSwitch() {

2 saveContext(currentContext);

3
4 doSwitch(cacheContext((int*) *(registers+REG_A0)),

5 *(registers+REG_A1));

6 }

Listing 3: Implement function of the context switch system call invoked by the
emulator.
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3.2.2.1 Save context

After clarifying where the context needs to be saved and restored, the remaining
question is how the information is exchanged between local and virtual contexts?

This question will be answered with the implementation of the saveContext
function shown in Listing 4. The procedure start with variable declaration and
saving the machine context locally. Since it is not part of saving the context virtually
it is commented out. The relevant code start with a condition that checks if the
executing instance is the parent of the context that needs to be saved. In case
that this conditions holds, the context does not need to be saved, since the parent
already operates on the virtual context. On the other hand if the condition does
not hold the local information should be copied to the virtual context. Therefore,
the parent page table of the context that should be saved is looked up first. The
parent page table is needed to access virtual addresses by translating them into
physical addresses. For example, the parent page table is used to save the program
counter which is shown in Line 11. storeV irtualMemory uses the page table of
the parent and the virtual address of the program counter translates it and stores
the local program counter in it. Most of the other context fields (LoReg, HiReg,
ProgramBreak, Exception, FaultingPage, and ExitCode) are saved the same way.

While saving the registers it is important that not the pointer to the registers
should be saved, but the value of each register. Therefore, after translating the
virtual address to the registers a while-loop saves register by register, see Lines
18− 22.

1 void saveContext(int* context) {

2 // variable declaration

3
4 // save machine state

5
6 if (getParent(context) != MY_CONTEXT) {

7 parentTable = getPT(getParent(context));

8
9 vctxt = getVirtualContext(context);

10
11 storeVirtualMemory(parentTable, PC(vctxt), getPC(context));

12
13 r = 0;

14 regs = getRegs(context);

15
16 vregs = (int*) loadVirtualMemory(parentTable, Regs(vctxt));

17
18 while (r < NUMBEROFREGISTERS) {

19 storeVirtualMemory(parentTable, (int) (vregs + r),
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20 *(regs + r));

21 r = r + 1;

22 }

23
24 storeVirtualMemory(parentTable, LoReg(vctxt),

25 getLoReg(context));

26 // similar for HiReg, ProgramBreak, Exception,

27 // FaultingPage, and ExitCode

28 }

29 }

Listing 4: Information of a local context is saved in the virtual context.

3.2.2.2 Restore context

Rather than going through the source code of the restoreContext function two
main concepts are pointed out.

First, Listing 5 shows how the program counter is restored from the virtual
context. Similar to saving the context, the page table of the parent is necessary
in order to resolve the virtual addresses to physical addresses. The process of
restoring the context is similar to saving the context, but the other way around.
PC(vctxt) gives the virtual address of the program counter of the virtual context.
This address is translated by using the parentTable and the value is written in the
locally cached context via setPC. Again, this is done for all other context fields
(LoReg, HiReg, ProgramBreak, Exception, FaultingPage, and ExitCode) and the
values of the registers are restored one by one in a loop.

1 setPC(context, loadVirtualMemory(parentTable, PC(vctxt)));

Listing 5: Restoring the program counter of a virtual context in the locally cached
context.

Second, it has to be taken care of newly allocated pages. Following the approach
of the 32 general purpose registers would lead to an obvious performance issue. The
standard configuration of selfie uses a virtual memory size of 67108864 byte and the
page size is 4096 bytes. Therefore, 16384 pages would have to be copied at every
context switch.

In order to optimize the caching of the page table, mixter uses the fact that the
page table is contiguous in memory and addresses are allocated bottom up and top
down. The aim is to minimize the number of pages that have to be cached.

mixter introduces three new pointers to the context data, namely LoPage,
MePage, and HiPage.
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� The LoPage marks the page with the lowest address that was allocated bottom
up since the last time the context was cached.

� The MePage marks the page with the highest address that was allocated
bottom up since the last time the context was cached.

� The HiPage marks the next free page will be allocated top down.

With the help of these pointers caching the page table only maps pages between
LoPage and MePage and between HiPage and the page with the lowest address top
down. Here, bottom up means from low to high addresses and top down means
from high to low addresses. Do not get confused by the figures which are drawn
the other way around. Figure 3.3 and Figure 3.4 show an example of page table
caching comparing the virtual and the local page table before and after caching.

Before caching, three new pages have been allocated bottom up and one new
page was allocated top down. This can be seen in Figure 3.3 on the left hand side,
since the difference between LoPage and MePage is three. HiPage would be the next
free page for top down allocation, since there is a mapping at the HiPage address,
one allocation happened.

page p frame f

p0 f0

p1 f1

p2 f2

p3 f3

p4 f4

p5 f5

. .

. .

. .

p− 1 f − 1

p f

virtual pt

LoPage

MePage

HiPage

page p frame f

p0 f0

p1 f1

p2 f2

. .

. .

. .

pp ff

local cache

Figure 3.3: Example of caching a page table before caching.

Now, the algorithm of caching allocated pages is presented.

Starting at LoPage, for each page between LoPage and MePage the following
steps are taken. First, the according frame of the actual page is loaded via the
parent page table. Notice that the frame address is virtual and has to be translated
via the parent page table itself. Second, the mapping of page to the translated
frame is inserted in the local page table. After raising the page by one towards the
MePage the same steps will be executed again until all pages up to MePage are
allocated. Last, the LoPage pointer has to be set to the last allocated page.
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The process for top down allocation is similar. Starting at the HiPage pointer,
the frame of each page is loaded via the parent page table. As long as the frame is
set to an address the page is mapped and therefore has to be mapped in the local
cache. Like before, the virtual address of the frame has to be translated via the
parent page table. After a page to frame mapping is inserted into the page table
at the local copy of the context, the next lowest page of the virtual page table is
handled and the process starts allover again. In the last step, the HiPage pointer is
set to the next free page.

page p frame f

p0 f0

p1 f1

p2 f2

p3 f3

p4 f4

p5 f5

. .

. .

. .

p− 1 f − 1

p f

virtual pt

LoPage

MePage

HiPage

page p frame f

p0 f0

p1 f1

p2 f2

p3 f3

p4 f4

p5 f5

. .

. .

. .

p− 1 f − 1

pp ff

local cache

Figure 3.4: Example of caching a page table after caching.

Still missing is the handling of MePage which is not part of restoring the context.
The pointer is set in mapPage a procedure that is used in selfie to map a given
page to a given frame. The according code can be seen in the nested if statements
in Listing 6. HiPage always remains the same until a context is cached. If a bottom
up allocation happens, there are two cases of interest. On the one hand a page
before LoPage could be allocated, then LoPage has to be set to that page to ensure
that it will be cached at the next context switch. On the other hand a page above
the actual MePage could be allocated, therefore the MePage has to be set to that
page.

1 void mapPage(int* context, int page, int frame) {

2 int* table;

3
4 table = getPT(context);

5 *(table + page) = frame;

6
7 if (page != getHiPage(context)) {

8 if (page < getLoPage(context))
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9 setLoPage(context, page);

10 else if (getMePage(context) < page)

11 setMePage(context, page);

12 }

13
14 // debugging code

15 }

Listing 6: Map a given page to a given frame in selfie.

3.2.3 Summary

mixter implements a concept called context caching that synchronizes the virtual
context data and a local copy at the emulator address space. With every context
switch the emulator restores all changes of the virtual context in the local context.
After interpretation and for every context switch on top of the emulator, the local
copy of the context is saved in the virtual context.

The implementation of context caching has two major implications for the mi-
crokernel of selfie:

� Memory management: The map system call was used to give the emulator the
information about the page tables. Now, with the implementation of context
caching a system similar to a memory management unit (MMU) is used within
the emulator to translate virtual addresses. The page tables are fully cached
within the emulator and therefore it has all necessary information. map is no
longer used and removed.

� Context creation: Using context caching makes context creation via the mi-
crokernel obsolete. An instance on top of the emulator does no longer need
to explicitly call the microkernel via a system call to create a duplication of
a context. With every context switch the emulator ensures that it caches the
latest information from a virtual context. Consequently, selfie got rid of the
context create system call.

Due to the implementation of context caching two of the system calls are already
obsolete and removed. In fact, the implementation of mixter goes one step further
by removing all system calls except context switching and therefore, extracting the
microkernel from the emulator. The following sections describe all details regarding
the system calls and the extraction of the microkernel.
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3.3 Identifiers

3.3.1 Problem

selfie’s microkernel design is inspired by the work of Jochen Liedtke[7]. In his work,
he proposes a concept that identifies each task or thread with a unique identifier
(uid). This concept was already implemented in original version of selfie. The mi-
crokernel within mipster holds a counter that is assigned for each created context.
Whenever a new uid is needed, the actual counter value is returned as uid and after
that the counter is incremented.

mixter comes up with a different approach. Instead of assigning an unique in-
teger number to an instance, the virtual address of a context alongside a pointer to
the parent context are used to identify an instance in mixter.

An important property of mixter is that an instance creates at most one virtual
address space. As a consequence, the same virtual address with the same parent
pointer cannot belong to different contexts. Without this property, the context
identification concept of mixter would not work.

3.3.2 Implementation

Implementing the introduced concept of identifiers requires to add the identifier
information to the context and set it appropriately.

3.3.2.1 Context information

Like ID before, the information about the identifier is part of the context in mixter
as well. Therefore, ID can safely be removed and the virtual address of the context
added. Notice that in Figure 2.11 from Chapter 2 the parent ID is already part of
the context. However, since IDs are obsolete in mixter the relevant information for
the identifier is a pointer to the parent context. Thus, the parent information has
to be changed from an integer to a pointer.

3.3.2.2 Set identifier

Whenever an instance creates a new context in its address space, the identifier in-
formation is set within the context. Notice that there is a difference in the identifier
information between the context in the virtual address space and the local copy at
the emulator. While an instance sets the virtual address and the parent pointer
to address 0 in the context created in the according address space, the local copy
holds the virtual address of the context and a pointer to the local copy of the parent
context. Therefore, an instance can check whether it is the parent of a context by
comparing the parent pointer of the context to address 0. Only the parent that
created the context in its address space will find address 0 as parent pointer. The-
oretically, the emulator could also find address 0 at the local copy of the context
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in case that the local copy of the parent context is located at address 0 in physical
memory. However, since lower addresses are most likely used by the underlaying
operating system this case is improbable and neglected in selfie.

3.3.3 Summary

Instead of unique integer identifiers, as previously used in selfie, mixter changed
the identifier of an instance to a combination of the virtual context address and the
pointer to the parent context. The implication of these changes is that the micro-
kernel acts no longer as a centralized system that creates unique identifiers for all
instances.

Furthermore, as another consequence of the introduced identifier concept, mixter
got rid of the ID system call. Calling ID asks the microkernel to return the identifier
of the currently executed instance which is used to verify whether the currently
executed instance is the parent of a given context. As explained in Section 3.3.2,
mixter is able to verify whether an instance is the parent of a given context without
invoking the microkernel. Therefore, the ID system call is obsolete and removed in
mixter.

3.4 Additional context information

3.4.1 Problem

Regarding operating systems, the term context is used for the information that is
needed to execute an instance. An instance could be either a process or a thread.
A detailed view of which information a selfie context holds can be found in Sec-
tion 2.4.4. During the implementation process of mixter the context information
has changed a lot. For example, as discussed in Section 3.3.2 the ID of a context
was replaced by the virtual address of the context and a pointer to the parent of
the context.

Basically, a context consists of all the processor registers. In mixter the context
is further used to hold some additional information. A mixter instance uses context
caching to synchronize the virtual context data with a local copy of the context at
the emulator address space, see Section 3.2. The following section will take a close
look at the context implemented in mixter.

3.4.2 Implementation

Figure 3.5 shows the information that is stored in a context in the mixter imple-
mentation together with a brief description.

Compared to Figure 2.11 two context fields were removed (id and parent) and
nine have been added (loPage, mePage, hiPage, exception, faultingPage, exitCode,
parent, virtualContext, and name). Due to a new context identification concept
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Figure 3.5: Structure of a context in mixter.

introduced in mixter, the id and parent field were removed from the context in-
formation, see Section 3.3. However, now follows a description of all the newly
introduced context data fields:

� loPage, mePage, and hiPage:
Pages in selfie are only mapped bottom up or top down. With the help of con-
text caching a page that was mapped in a virtual page table will be mapped on
the local copy of the emulator. Therefore, the information telling the emulator
which pages should be mapped is synchronized via context data. The pointers
loPage, mePage, and hiPage are used to mark the newly allocated pages. A
detailed explanation of the caching process can be found in Section 3.2.

� exception:
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Prior to the mixter implementation the machine status was part of the emula-
tor and contained information telling the instances which exception occurred
and what the exception parameter was. When an instance on top of the
emulator wanted to access the value of the status a system call was needed.
This was done by using the status system call. As a result the microker-
nel returned the current status of the emulator. Now, due to context saving
which was implemented during the course of creating mixter, the emulator
writes back the status value into the exception field of the virtual context.
Therefore, instances on top of the emulator already know about the exception
identifier.

� faultingPage:
In the original selfie implementation the machine status included the exception
identifier as well as exception parameter which may have contained the address
of the faulting page. Now, exception identifier and the faulting page are two
separate 32 bit integers and are both part of the context. Like exception,
the information about the faulting page is distributed via context saving and
therefore instances can access the data.

� exitCode:
Another information that have to be available at each instance is the exit
code. Again, this is achieved by adding the data to the context and context
caching.

� parent and virtualContext:
The virtual context address, together with a pointer to the parent context,
introduces a new concept to identify a context and replace the ID context
data. The name parent still stays the same, but rather than holding the ID
of the parent context, a pointer to the parent is stored now. The concept is
explained in detail in Section 3.3.

� name:
In order to give correct debugging messages at each instance, the name of the
loaded binary file becomes also part of the context data.

3.4.3 Summary

The main purpose of adding information to the context is to synchronize the context
data between the virtual context and the local copy of the context. Since the context
includes information about the exception number as well as the exception parameter
which is used for the faulting page address, an instance on top of the emulator
already knows about all the information the status system call would provide. As
a result, the status call is obsolete and can safely be removed. This implies that
an instance on top of the emulator is able to handle the exception of its children
without using a system call.
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3.5 Context switch

3.5.1 Problem

By using the techniques described in the last sections, namely context caching,
context identifiers, and additional context information, selfie almost got rid of all
hypster calls. The only one that is left is context switching.

Before a processor begins to interpret code, the context information, for exam-
ple program counter, page table pointer, etc., of a given process p1 is loaded into
the processor registers. According to this context information the processor starts
fetching and executing instructions. Notice that during the interpretation of code,
the values in the processor registers may change. As a consequence, the processor
registers have to be saved in the context of the executing process when the processor
stops interpreting. In order to interpret another process p2 the processor performs
a context switch as follows. First, the processor has to save the actual value of all
processor registers back into the context of process p1. Therefore, the processor is
able to start interpreting p1 at the same state at which it had stopped before the
context switch happened. Second, the context information of process p2 is loaded
into the processor registers. Now, the processor has the information needed to in-
terpret process p2.

In selfie context switching is implemented as a system call. Whenever a context
switch occurs, the microkernel is invoked and performs the context switch mech-
anism as described above. Since the microkernel is located within the emulator,
a context switch happens between interpreting two processes. Before the next in-
struction is interpreted, the context information is fully restored in the processor
registers.

3.5.2 Proposal for solution

Getting rid of the context switch system call would require that context switching
happens on top of the emulator while interpreting a process and not within the
emulator by invoking the microkernel. Consider again two processes p1 and p2. The
emulator is interpreting process p1 and would like to switch to process p2. The
functionality of context switching is now part of the code of the processes p1 and
p2 which are interpreted by the emulator. Applying the mechanism on top of the
emulator would not work straight away. The MIPSter instruction set only allows to
load one value at a time into a processor register. Therefore, the context informa-
tion is loaded into the processor registers one by one which leads to an inconsistent
state of the processor registers. Loading the program counter and the page table
pointer into the according processor registers reveals the problem. There are two
possibilities, loading the program counter first or loading the page table pointer
first. Assuming that p1 loads the program counter of p2 first, the emulator would
execute the next instruction of process p2. While fetching, the instruction of process
p2 is translated with the page table of process p1 which is incorrect. On the other
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hand, assuming p1 loads the page table pointer first, the emulator would execute
the next instruction of process p1 but would try to translate it using the page table
of process p2. Again, the instruction could not be fetched.

As a consequence, at least the program counter and the page table pointer need
to be exchanged atomically. This implies, that the MIPSter instruction set has to
be extended by instructions that fulfill these requirements. However, this task is
not implemented in mixter and remains future work.

3.6 Exceptions

3.6.1 Problem

So far, the focus of the implementation discussion was on hypster calls. As already
mentioned, selfie includes five more system calls for the built-in library. The idea
is that the parent should be concerned with handling the exit, open, read, write,
and malloc calls; whereas before the microkernel needed to be invoked.

Therefore, mixter provides a technique using exceptions to handle the build-in
library functions. Since the parent is in charge of handling exceptions, the micro-
kernel basically throws an exception instead of executing the implement function
for the caller. Therefore, a context switch to the parent happens. Due to context
caching the parent has all the information that is needed to handle the exception
from its children and can execute the according implement function itself instead
of the microkernel.

3.6.2 Implementation

The system call is still invoked like before in the according emit function. For exam-
ple, the emit function of exit stays entirely the same, see Listing 3. The instructions
in Line 9 and Line 10 are similar for all system calls. First, the system call number
is stored in register v0 and then, the system call is invoked. The difference lies in
the way the interpreter handles the system call that has been invoked. This can
be seen in Listing 7. Since the context switch call is still handled by the emulator,
the difference can be seen clearly. Instead of calling the implement function, the
emulator throws an exception. Since the parent is in charge of exception handling,
a context switch to the parent happens.

For all kinds of instances, namely mipster, hypster, and mixter, additional func-
tionality has to be added in the exception handling. If the exception is caused by a
built-in library function, the exception handler has to check the system call number
stored in register v0. This number clearly identifies all former system calls. To
handle the system call, the according implement function is invoked.
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1 void fct_syscall() {

2 // debugging code

3
4 if (interpret) {

5 pc = pc + WORDSIZE;

6
7 if (*(registers+REG_V0) == SYSCALL_SWITCH)

8 implementSwitch();

9 else

10 throwException(EXCEPTION_SYSCALL, 0);

11 }

12 }

Listing 7: Code how the interpreter handles a system call instruction.

Minor changes have been made to the implement function. Before, the imple-
ment function was only invoked by the emulator which has the relevant information
about the calling instance in its registers. Due to context caching the parent can
access the recent information about the child context in its memory. Therefore, all
context accesses are changed in a way that is shown in Listing 8. Instead of reading
the values from the emulated machine registers, the data is accessed by the parent
via its child context.

1 // before: access via machine registers

2 size = *(registers+REG_A2);

3 vaddr = *(registers+REG_A1);

4 fd = *(registers+REG_A0);

5
6 // after: access via saved context information

7 size = *(getRegs(context)+REG_A2);

8 vaddr = *(getRegs(context)+REG_A1);

9 fd = *(getRegs(context)+REG_A0);

Listing 8: Changes needed for context data access in an implement function of a
system call.

The implement functions of open, read, and write are implemented by calling
their own function. For example, read is implemented by calling the read function.
This results in a top down recursive exception handling explained in the following
example.

Suppose a system where a mixter m3 is running on top of another mixter m2 and
m2 is running on top of a mipster m1. Initially, m3 wants to read from memory by
calling the read function. As explained above, the microkernel throws an exception.
m2 is in charge to handle this exception and calls the implement function of read.
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Since there is another instance below m2 the microkernel throws an exception like
before. Again, m1 handles the exception by calling the implement function of read.
Now, at the emulator m1 a read on the physical memory is performed.

3.6.3 Summary

By using exceptions, a concept was introduced that allows the parent to handle all
built-in library calls from its children. It is important to notice that the call in the
end may still be handled by the emulator. Like in the read example from above,
the physical read on memory is done by the emulator, but the call is handled parent
by parent top down. As a result, the built-in library is no longer implemented via
system calls.

All system calls except context switching are no longer used in selfie. As a conse-
quence, the microkernel is no longer located within the emulator. All functionality
of the former system calls is now handled by the parent instance or it is obsolete.





CHAPTER 4
Conclusion and future work

4.1 Conclusion

This thesis presented mixter, an experimental hypervisor that is capable of simulta-
neously emulating and virtualizing a MIPSter machine. In machine emulation, the
functionality of a specific hardware is imitated by software. One way to implement
machine emulation is through code interpretation. In system virtualization, virtual
instances of the hardware on which it runs are created. This can be achieved by a
form of context switching and virtual memory. However, emulation and virtualiza-
tion of the same hardware are supposed to be functionally equivalent.

The purpose of mixter is to get closer towards identifying methods for the veri-
fication of the functional equivalence of emulation and virtualization. Even though
mixter cannot verify the equivalence, it is capable of virtualizing the machine on
which it runs by alternating between emulation and virtualization at runtime.

In both cases, no matter if emulation or virtualization, it is essential to operate
on the same context data. Therefore, a concept called context caching was intro-
duced. This concept is used to synchronize the context information of a context
stored in a virtual address space and the according context stored at the emulator.
Furthermore, with the implementation of mixter selfie got rid of all system calls
except context switching. Again, this was achieved by introducing a new concept
for identifying an instance, handling exceptions, enhancing context information and
caching contexts. The next steps towards the verification remain future work and
are briefly described in the following section.

The software of mixter is implemented as part of selfie, a software system that
is used for educational purposes. The selfie system consists of a self-compiling
compiler (starc), a self-executing emulator (mipster) and a self-hosting hypervisor
(hypster). Similar to all other parts of selfie, mixter is said to be self-referential,
since it can emulate and host another mixter instance on top of it.
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4.2 Future work

As shown in Chapter 3 there is still one system call left in the implementation of
mixter. Getting rid of the context switch system call cannot be achieved by any of
the steps taken to implement mixter. Performing a context switch on top of the em-
ulator leads to new challenges as explained in Section 3.5. During a context switch,
the machine registers of the emulator may hold information of different contexts.
As a consequence, the emulator is in an inconsistent state and thus is not able to
proceed the execution. In order to solve these challenges it is most likely necessary
to extend the MIPSter instruction set. However, one design criteria of mixter was
to keep selfie as simple and minimalistic as possible. Therefore, removing the last
system call remains to be implemented in the future.

A further step towards the verification of the functional equivalence of emulation
and virtualization would be to execute each instruction twice. Instead of alternating
between emulation and virtualization mixter should do both for each instruction.
Therefore, the machine state could be compared at instruction level. Special care
has to be taken during the execution of file operations like read, write, and open.
Here, the instructions should be executed twice as well, but the effects on the file
should only happen once.
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